Cuando se llega cerca de los 100° C, la fluidificación de la membrana celular puede ser letal. Por otra parte, no menos importante, la clorofila se degrada a los 75°, perdiéndose la capacidad fotosintética.
A pesar de todo esto existen los hipertermófilos, que viven con toda naturalidad por encima de los 80° C.
El hipertermófilo de alta temperatura más extremo es la Pyrolobus fumarii (bacteria, procariota, archea), que vive en las paredes de las fumarolas hidrotermales submarinas.
Es un quimiolitótrofo nitratorreductor (ataca las piedras y aprovecha los nitratos) y, por lo que se ha podido medir hasta ahora, es capaz de medrar a hasta 114° C, bien por arriba de la temperatura de vaporización del agua. Incluso, a temperaturas menores de 90° C deja de desarrollarse. Es un ambiente demasiado frío para ella.
Otro hipertermófilo que vive en chimeneas del fondo del mar, la archaea productora de metano Methanopyrus spp, está atrayendo ahora mucha atención porque su filogenética está muy cercana a la raíz del árbol de la vida. Se espera que el análisis de sus genes y su actividad ayuden a clarificar cómo sobrevivían las primeras células del mundo.
Hay termófilos entre las bacterias fototróficas (cianobacterias, bacterias púrpuras y verdes), eubacterias (Bacillus, Clostridium, Thiobacillus, bacteria ácido-láctica, Desulfotomaculum, actinomicetos, espiroquetas, Thermus y muchos otros géneros), así como en las archeas (Pyrococcus, Thermococcus, Thermoplasma, Sulfolobus y las metanógenas).
En contraste, los eucariotas soportan un límite superior de temperatura menos alto, de 60° C para algunos protozoos, algas y hongos, en torno a los 48° C para las plantas vasculares, y de 40° C para los peces, posiblemente porque la solubilidad del oxígeno disminuye a mayor temperatura.
Y mucho frío también
A muy bajas temperaturas también medra la vida. Se han encontrado microorganismos con actividad biológica bien debajo del punto de congelación, en un ambiente a -18° C (un freezer de heladera está entre -10 y -18° C).
Hace un par de años, científicos de la National Science Foundation (NSF) de los Estados Unidos hallaron en el polo sur microbios que resisten el frío y las intensas radiaciones ultravioletas del sitio, y que son capaces de vivir en la oscuridad y con escasez de agua líquida. Estas bacterias mostraban un metabolismo activo y con síntesis de ADN a temperaturas ambientes de -12 a -17° C. Se supone que poseen enzimas y membranas que les permiten medrar en esos terribles entornos, muy similares a los de Marte.
Este valor de -18 grados numéricamente no parece mucho. La principal razón por la que la diferencia en grados no es tan amplia en el extremo frío —en comparación con los límites que se alcanzan hacia arriba— es que debajo de los 0° C, como todos sabemos, el agua se congela. Congelada deja de ser el medio para reacciones metabólicas, pero además, dado que el agua se expande al hacerse hielo, los cristales rompen la membrana celular.
Por esta razón la mayoría de los organismos —aún más los unicelulares— sufren daños que los llevan a la muerte. La excepción es un nematodo llamado Panagrolaimus davidi, que puede resistir vivo con la totalidad del agua de su cuerpo congelada.
Los científicos vienen estudiando los microbios que toleran las más gélidas temperaturas de la Tierra en los helados mares y lagos árticos y en los secos valles antárticos.
Se procura aprender, así, dónde buscar la vida en otros mundos. Se cree que existen posibilidades de encontrar algún tipo de vida en los lechos de Marte (que ahora se sabe fueron mares salados) y bacterias envueltas en fluidos y hielo en la luna de Júpiter llamada Europa.
Los científicos neocelandeses que investigan en la Antártida opinan que el hallazgo de microorganismos cuya existencia transcurre bajo las gélidas superficies de ese continente ha fortalecido la posibilidad de encontrar organismos vivos en Marte. También para ellos, los organismos vivos de la Antártida viven en condiciones geológicas similares a las del planeta rojo.
El clima de la Antártida se caracteriza por frías temperaturas, que pueden bajar de los treinta grados centígrados bajo cero, y por la sequedad extrema del medio ambiente, que en la Antártida recibe unos 10 milímetros de lluvias anuales. Muchos lugares de Marte se aproximan mucho a eso.
Los científicos dicen que no se debe perder la posibilidad de estudiar los microorganismos en la Antártida, para así estar preparados respecto a lo que se puede encontrar en los mundos gélidos, en vez de tener que esperar a que se pueda viajar al planeta rojo.
Los microorganismos hallados en la Antártida, localizados en un área conocida como Valles Secos, fueron identificados como Beauverias bassianas, unos hongos que pertenecen a una especie emparentada con los de la penicilina. Estos hongos viven enterrados bajo la superficie de la tierra, a una profundidad de entre tres y ocho centímetros.
Los científicos notaron además que el hábitat de la colonia de microbios tiene un alto grado de salinidad, de unas siete veces, al menos, el grado de salinidad de los océanos.
Y otros soportan radiaciones
La radiación es energía en movimiento, bien en forma de haces de partículas —protones, neutrones— o como ondas electromagnéticas —rayos gamma, rayos-X, utravioletas, de luz.
No es habitual que en la superficie de la Tierra haya niveles extremos de radiación, pero igualmente se han estudiado los efectos de una radiación intensa, tanto de ultravioleta como de radiación ionizante, por su importancia en medicina, producción de energía o en los viajes espaciales.
Los daños que puede producir el exceso de radiación van desde la disminución de la movilidad o inhibir la fotosíntesis, hasta algo mucho más importante: daño a los ácidos nucleicos. Cuando una criatura se ve expuesta a una dosis alta de radiación, esta energía intensa causa la descomposición de la molécula de ADN —la colección de todos los genes en un ser vivo que constituyen su esencia—, y ninguna criatura puede sobrevivir si sus genes no funcionan bien.
En este caso el daño es directo, pero también puede ser indirecto, a través de la formación de contenidos de oxígeno reactivo, que reaccionan tanto con las bases como con los dobles y triples enlaces.
A pesar de todo esto, tenemos extremófilos resistentes a la radiación. La bacteria Deinococcus radiodurans es famosa por su capacidad de resistir la radiación ionizante. Una dosis de 500 a 1000 rads es suficiente para matar a una persona. La D. radiodurans perdura aún después de haber sido sometida a 1.500.000 rads, ¡tres mil veces más!
La mayoría de los microbios tienen herramientas para reparar —ocasionalmente— los daños en su ADN. Por ejemplo, cuando se avería una parte del ADN de Escherichia coli, una bacteria muy común que vive en nuestros intestinos, usualmente puede repararlo y seguir viviendo. Sin embargo, no puede sobrevivir a dos o tres daños grandes en su ADN. D. radiodurans, por su parte, puede recomponer en unas pocas horas el ADN fragmentado a causa de la radiación.
Una de las razones es que tiene una gran cantidad de copias de sus genes. Las células de D. radiodurans poseen de cuatro a diez copias de su molécula de ADN, mientras que la mayoría de las bacterias poseen sólo una copia. Estas copias sirven como reserva, son como los resguardos de seguridad que uno guarda de los archivos de una computadora.
De esta manera, cuando la radiación daña el ADN de D. radiodurans, el microbio tiene muchas oportunidades de encontrar una copia intacta de cada gen para usarla y recomponer su ADN. Una proteína especial llamada RecA es la que une los fragmentos. Y parece que D. radiodurans tendría más herramientas de reparación.
Estos procesos aún se están estudiando. Los científicos no tienen completamente claro cómo y por qué D. radiodurans es mucho más resistente a la radiación que otros microbios que tienen las mismas herramientas. Otras bacterias tienen más de una copia de sus genes, aunque no tantas como D. radiodurans.
Los científicos están examinando los genes de D. radiodurans, tratando de entender qué otras herramientas puede tener la bacteria que le confieren una protección extra contra la radiación.
Lo más importante que intentan saber es por qué D. radiodurans desarrolló esta superresistencia a la radiación, ya que el microbio no podría estar expuesto a tan increíbles niveles de radiación en ningún lugar de la naturaleza de la Tierra.
También es increíble que D. radiodurans sea capaz de sobrevivir largos periodos sin una sola gota de agua. Algunos investigadores piensan que la resistencia a la radiación de la bacteria es un efecto colateral de su habilidad para soportar largos períodos sin agua, algo que sí ocurre en muchos lugares. La deshidratación causa los mismos daños en el ADN que la radiación, de modo que requiere el mismo proceso de reparación.
Otros organismos que pueden soportar altos niveles de radiación son dos especies de bacterias del género Rubrobacter y el alga verde Dunaliella bardawil.
Un lago que se formó en el cráter del volcán Licancábur, ubicado a unos 6.100 m de altitud en el Altiplano andino y en la frontera entre Bolivia y Chile, es el lugar ideal para saber cómo se han adaptado los organismos que viven en lagos como ése a la atmósfera enrarecida y al dañino ambiente con alta radiación UV (ultravioleta). Allí se llevan a cabo experimentos sobre estos organismos.
Altas presiones también
La presión varía con la altitud. En la atmósfera, por ejemplo, a 10 km de altitud la presión es casi un cuarto de la que existe a nivel del mar.
Nosotros hemos evolucionado en una presión de una atmósfera, que es igual a 101,3 kilopascales (el pascal es la unidad que se utiliza para medir la presión por metro cuadrado) y también a los famosos 760 mm de mercurio de los barómetros tradicionales.
Nuestros ancestros acuáticos, sin embargo, estaban sometidos a una mayor presión, pero hidrostática (en el agua).
La presión hidrostática crece en 10,5 kilopascales por cada metro de profundidad. A cinco metros de profundidad, ya tenemos un 50% más de presión que en la superficie.
En la litósfera (dentro de la estructura rocosa del planeta) la presión litosférica crece 22,6 kilopascales por cada metro hacia abajo. A cinco metros debajo del suelo, la presión es un 110% superior a la del aire en la superficie del planeta.
El océano presenta profundidades extremas, en las que la presión es enorme.
El punto de ebullición del agua crece con la presión, así que en el fondo oceánico, donde hay fumarolas volcánicas con temperaturas que deberían vaporizarla, el agua del mar se mantiene líquida a 400° C. Este fenómeno incrementa la temperatura a la que es posible el crecimiento microbiano.
Ya hablamos antes de los efectos de la temperatura, pero ¿qué le hace la presión a los seres vivos?
Entre otras acciones, la presión produce un cambio de volumen del organismo (lo reduce); además, comprime el empaquetamiento de los lípidos de manera que hace menos fluidas sus membranas. El aumento de la presión puede también inhibir reacciones químicas.
Aunque muchos seres pueden adaptarse a una presión muy alta, lo que no soporta casi ninguno son los cambios repentinos, que pueden ser letales.
La fosa de las Marianas es la mayor depresión marina del mundo, con 11.000-11.200 m de profundidad.
Allí, además de Piccard con el batiscafo, bajaron expediciones con submarinos robóticos que han encontrado, además de organismos que podrían vivir a temperatura y presión estándar, otros, llamados piezófilos, que están totalmente adaptados a presiones de 70-80 megapascales (casi mil veces la presión que soportamos nosotros en la superficie). Estas especies no sobreviven a presiones menores a los 50 megapascales.
El submarino científico japonés Kaiko, por ejemplo, alcanzó las máximas profundidades oceánicas del mundo, realizando más de 250 exploraciones que permitieron descubrir 180 bacterias y 350 nuevas especies, útiles para aplicaciones médicas e industriales.
Este vehículo no tripulado, operado en forma remota, tenía apenas tres metros de largo y pesaba 10,6 toneladas. Fue perdido en medio de un tifón y ahora procuran reemplazarlo.
En el lecho de la depresión Challenger, la más profunda del mundo, en la fosa Maruyama, situada cerca de Guam (Islas Marianas) en el océano Pácifico occidental, los brazos robóticos de Kaiko llevaron a cabo una búsqueda de microbios, con ricos resultados.
El científico Yuichi Nogi descubrió, en la fosa de las Marianas, la bacteria Moritella yayanosii, que contiene proteínas como la DHA y la EPA, ampliamente utilizadas en la medicina. Los investigadores intentan desarrollar a partir de ella nuevos y más potentes medicamentos contra la hipertensión y el cáncer, así como un agente purificador de la sangre.
Otro hallazgo fue la bacteria Shewanella violacea, en una exploración a 6.500 metros en la Fosa de Tyukyu, cerca de la meridional isla japonesa de Okinawa. Esta bacteria tiene mecanismos particulares de regulación de la presión.
La Shewanella violacea se está probando en la industria de los semiconductores. Los científicos creen que algunas estructuras cristalinas de la bacteria podrían aplicarse a la creación de compuestos químicos útiles para el desarrollo de materiales semiconductores.
El biólogo marino Shinji Tsuchida participó en varias exploraciones en la fosa de las Marianas.
En el océano Indico, gracias al submarino robot halló vida en torno a las “fumarolas negras” (del inglés black smokers), una suerte de géiseres submarinos que arrojan agua muy caliente rica en minerales desde el fondo del océano.
Las especies halladas en ese lugar proliferan en un ambiente con gran concentración de sulfuro de hidrógeno (altamente venenoso para los animales) y metano, y una presión mil veces superior a la de la superficie marina.
La teoría común señalaba que nada podría sobrevivir en semejantes ambientes extremos, a los que la luz del sol jamás llega.
Allí, en aguas cercanas a Okinawa, donde a profundidades de más de 2.500 metros la temperatura del agua llega a 360° C, se encontraron, por ejemplo, el extraño gusano tubícola Riftia pachyptila, el pequeño cangrejo blanco Austinograea rodriguezensis, y varias especies de camarones y mejillones.
El gusano tubícola parece realmente extraterrestre: no tiene boca ni tracto digestivo y se alimenta del sulfuro de hidrógeno (que es considerado un veneno de amplio espectro), pero no directamente. Contiene una bacteria que vive en simbiosis con él. La bacteria posee una enzima en su organismo que disuelve el sulfuro de hidrógeno y lo convierte en materia orgánica que alimenta al gusano.
Alrededor de estos gusanos se ha creado todo una comunidad de seres vivos de diferentes tipos, que dependen de éstos.
Si todo está muy seco…
El agua posee muchas propiedades que la convierten en el solvente esencial de la vida. Los seres vivos son en gran parte de agua. Así que si falta el agua, la vida no es posible… ¿o sí?
Por lo que se sabe hasta ahora, la falta de agua en un ambiente sí parece ser determinante. El año pasado, en la parte más seca del desierto de Atacama (Chile), un equipo de investigación llevó a cabo experimentos similares a los realizados por las sondas Viking en Marte para encontrar microbios.
No hallaron ninguna evidencia de vida. Los científicos calificaron de “altamente inusual” este descubrimiento, por ser un ambiente expuesto a la atmósfera terrestre. Pero Atacama es la región más seca del mundo.
Ubicado a 1.000 metros de altitud, el desierto de Atacama tiene una antigüedad de 15 millones de años y es 50 veces más árido que el Valle de la Muerte californiano. Dicen los investigadores que la razón de que sea tan seco y virtualmente estéril es porque la humedad está bloqueada a ambos lados, por los Andes al este y por montañas costeras al oeste.
Los científicos estudiaron la parte más seca de Atacama, un área llamada “de doble sombra de lluvia”. Durante los últimos cuatro años, la estación meteorológica del equipo registró una única precipitación de tan sólo unos míseros 0,25 mm de humedad. La hipótesis del equipo es que en el corazón del desierto de Atacama llueve, en promedio, una vez cada diez años.